Package: BayesNSGP 0.1.2
BayesNSGP: Bayesian Analysis of Non-Stationary Gaussian Process Models
Enables off-the-shelf functionality for fully Bayesian, nonstationary Gaussian process modeling. The approach to nonstationary modeling involves a closed-form, convolution-based covariance function with spatially-varying parameters; these parameter processes can be specified either deterministically (using covariates or basis functions) or stochastically (using approximate Gaussian processes). Stationary Gaussian processes are a special case of our methodology, and we furthermore implement approximate Gaussian process inference to account for very large spatial data sets (Finley, et al (2017) <arxiv:1702.00434v2>). Bayesian inference is carried out using Markov chain Monte Carlo methods via the 'nimble' package, and posterior prediction for the Gaussian process at unobserved locations is provided as a post-processing step.
Authors:
BayesNSGP_0.1.2.tar.gz
BayesNSGP_0.1.2.zip(r-4.5)BayesNSGP_0.1.2.zip(r-4.4)BayesNSGP_0.1.2.zip(r-4.3)
BayesNSGP_0.1.2.tgz(r-4.4-any)BayesNSGP_0.1.2.tgz(r-4.3-any)
BayesNSGP_0.1.2.tar.gz(r-4.5-noble)BayesNSGP_0.1.2.tar.gz(r-4.4-noble)
BayesNSGP_0.1.2.tgz(r-4.4-emscripten)BayesNSGP_0.1.2.tgz(r-4.3-emscripten)
BayesNSGP.pdf |BayesNSGP.html✨
BayesNSGP/json (API)
# Install 'BayesNSGP' in R: |
install.packages('BayesNSGP', repos = c('https://danielturek.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:2fe1901919. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:calcQFcalculateAD_nscalculateU_nsconditionLatentObsdetermineNeighborsdmnorm_nngpdmnorm_sgvinverseEigenmatern_corrnimble_sparse_cholnimble_sparse_crossprodnimble_sparse_solvenimble_sparse_tcrossprodnsCorrnsCrosscorrnsCrossdistnsCrossdist3dnsDistnsDist3dnsgpModelnsgpPredictorderCoordinatesMMDR_sparse_cholR_sparse_crossprodR_sparse_solveR_sparse_tcrossprodrmnorm_nngprmnorm_sgvsgvSetup
Dependencies:clicodacolorspacecpp11DBIdplyrfansifarverFNNgenericsggplot2gluegtableigraphisobandlabelinglatticelifecyclelpSolvemagrittrMASSMatrixmgcvminqamitoolsmunsellnimblenlmenumDerivpillarpkgconfigpracmaproxyR6RColorBrewerRcppRcppArmadillorlangscalesStatMatchsurveysurvivaltibbletidyselectutf8vctrsviridisLitewithr