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addHMC Add HMC sampler

Description

Add a No-U-Turn (NUTS) Hamiltonian Monte Carlo (HMC) sampler to an existing nimble MCMC
configuration object

Usage

addHMC(
conf,
target = character(),
type = "NUTS",
control = list(),
replace = FALSE,
print = TRUE,
...

)

Arguments

conf A nimble MCMC configuration object, as returned by ‘configureMCMC‘.

target A character vector of continuous-valued stochastic node names to sample. If
this argument contains any discrete-valued nodes, an error is produced and no
HMC sampler is added. If this argument is omitted, then no HMC sampler is
added.

type A character string specifying the type of HMC sampler to add, either "NUTS"
or "NUTS_classic". See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
each sampler. The default sampler type is "NUTS".

control Optional named list of control parameters to be passed as the ‘control‘ argument
to the HMC sampler. See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
the control list elements accepted by each sampler.
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replace Logical argument. If ‘TRUE‘, any existing samplers operating on the specified
nodes will be removed, prior to adding the HMC sampler. Default value is
‘FALSE‘.

print Logical argument whether to print the newly added HMC sampler. Default value
is ‘TRUE‘.

... Additional named arguments passed through ... will be used as additional con-
trol list elements.

Details

This function adds an HMC sampler to an MCMC configuration object. Use this function if you
have already created an MCMC configuration and want to add an HMC sampler. Optionally, using
‘replace = TRUE‘, this function will also remove any existing samplers operating on the target
node(s).

Either the ‘NUTS_classic‘ or the ‘NUTS‘ sampler can be added. Both implement variants of No-
U-Turn HMC sampling, however the ‘NUTS‘ sampler uses more modern adapatation techniques.
See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details.

Use ‘conf$addSampler‘ instead if you need more fine-grained control. See ‘help(configureMCMC)‘
in nimble.

Value

Invisibly returns an object of class ‘MCMCconf‘, but this function is primary called for its side
effect.

Author(s)

Daniel Turek

See Also

configureHMC buildHMC configureMCMC addSampler sampler_NUTS sampler_NUTS_classic

Examples

code <- nimbleCode({
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
sigma ~ dunif(0, 10000)
for(i in 1:N) {

mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], sd = sigma)

}
})

N <- 10
constants <- list(N = N, x = 1:N)
data <- list(y = 1:N)
inits <- list(b0 = 1, b1 = 0.1, sigma = 1)
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Rmodel <- nimbleModel(code, constants, data, inits, buildDerivs = TRUE)

## create default MCMC configuration object
conf <- configureMCMC(Rmodel)

## remove default samplers operating on b0 and b1
conf$removeSamplers(c("b0", "b1"))

## add an HMC sampler operating on b0 and b1
addHMC(conf, target = c("b0", "b1"))

Rmcmc <- buildMCMC(conf)

# Cmodel <- compileNimble(Rmodel)
# Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
# samples <- runMCMC(Cmcmc)

buildHMC Build HMC

Description

Build an MCMC algorithm which applies HMC sampling to continuous-valued dimensions

Usage

buildHMC(
model,
nodes = character(),
type = "NUTS",
control = list(),
print = TRUE,
...

)

Arguments

model A nimble model, as returned by ‘nimbleModel‘

nodes A character vector of stochastic node names to be sampled. If an empty char-
acter vector is provided (the default), then all stochastic non-data nodes will
be sampled. An HMC sampler will be applied to all continuous-valued non-
data nodes, and nimble’s default sampler will be assigned for all discrete-valued
nodes.

type A character string specifying the type of HMC sampling to apply, either "NUTS"
or "NUTS_classic". See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
each sampler. The default sampler type is "NUTS".



buildHMC 5

control Optional named list of control parameters to be passed as the ‘control‘ argument
to the HMC sampler. See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
the control list elements accepted by each sampler.

print Logical argument specifying whether to print the montiors and samplers. De-
fault is TRUE.

... Other arguments that will be passed to ‘configureHMC‘.

Details

This is the most direct way to create an MCMC algorithm using HMC sampling in nimble. This will
create a compilable, executable MCMC algorithm, with HMC sampling assigned to all continuous-
valued model dimensions, and nimble’s default sampler assigned to all discrete-valued dimensions.
The ‘nodes‘ argument can be used to control which model nodes are assigned samplers. Use this if
you don’t otherwise need to modify the MCMC configuration.

Either the ‘NUTS_classic‘ or the ‘NUTS‘ samplin can be applied. Both implement variants of No-
U-Turn HMC sampling, however the ‘NUTS‘ sampler uses more modern adapatation techniques.
See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details.

Value

An object of class ‘MCMC‘.

Author(s)

Daniel Turek

See Also

addHMC configureHMC configureMCMC addSampler sampler_NUTS sampler_NUTS_classic

Examples

code <- nimbleCode({
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
sigma ~ dunif(0, 10000)
for(i in 1:N) {

mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], sd = sigma)

}
})

N <- 10
constants <- list(N = N, x = 1:N)
data <- list(y = 1:N)
inits <- list(b0 = 1, b1 = 0.1, sigma = 1)
Rmodel <- nimbleModel(code, constants, data, inits, buildDerivs = TRUE)

Rmcmc <- buildHMC(Rmodel)



6 configureHMC

# Cmodel <- compileNimble(Rmodel)
# Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
# samples <- runMCMC(Cmcmc)

configureHMC Configure HMC

Description

Create a nimble MCMC configuration object which applies HMC sampling to continuous-valued
dimensions

Usage

configureHMC(
model,
nodes = character(),
type = "NUTS",
control = list(),
print = TRUE,
...

)

Arguments

model A nimble model, as returned by ‘nimbleModel‘

nodes A character vector of stochastic node names to be sampled. If an empty char-
acter vector is provided (the default), then all stochastic non-data nodes will
be sampled. An HMC sampler will be applied to all continuous-valued non-
data nodes, and nimble’s default sampler will be assigned for all discrete-valued
samplin to apply, either "NUTS" or "NUTS_classic".

type A character string specifying the type of HMC sampling to apply, either "NUTS"
or "NUTS_classic". See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
each sampler. The default sampler type is "NUTS".

control Optional named list of control parameters to be passed as the ‘control‘ argument
to the HMC sampler. See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
the control list elements accepted by each sampler.

print Logical argument specifying whether to print the montiors and samplers. De-
fault is TRUE.

... Other arguments that will be passed to ‘configureMCMC‘
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Details

This function can be used like ‘configureMCMC‘ in nimble to create an MCMC configuration
object. It will return an MCMC configuration with an HMC sampler assigned to continuous-valued
model dimensions, and nimble’s default sampler assigned for discrete-valued dimensions (or, only
for the nodes specified in the ‘nodes‘ argument). The resulting MCMC configuration object can be
used as an argument to ‘buildMCMC‘ to generate an executable MCMC algorithm.

Either the ‘NUTS_classic‘ or the ‘NUTS‘ sampler can be applied. Both implement variants of No-
U-Turn HMC sampling, however the ‘NUTS‘ sampler uses more modern adapatation techniques.
See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details.

Use this function if you want to create an MCMC configuration, and then modify it further before
building the MCMC algorithm. ‘buildHMC‘ provides a more direct route to a compilable MCMC
algorithm with HMC sampling applied to all continuous-valued dimensions.

Value

An object of class ‘MCMCconf‘.

Author(s)

Daniel Turek

See Also

addHMC buildHMC configureMCMC addSampler sampler_NUTS sampler_NUTS_classic

Examples

code <- nimbleCode({
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
sigma ~ dunif(0, 10000)
for(i in 1:N) {

mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], sd = sigma)

}
})

N <- 10
constants <- list(N = N, x = 1:N)
data <- list(y = 1:N)
inits <- list(b0 = 1, b1 = 0.1, sigma = 1)

Rmodel <- nimbleModel(code, constants, data, inits, buildDerivs = TRUE)

## create MCMC configuration object with only an HMC sampler
conf <- configureHMC(Rmodel)

Rmcmc <- buildMCMC(conf)

# Cmodel <- compileNimble(Rmodel)
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# Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
# samples <- runMCMC(Cmcmc)

nimbleHMC Builds and executes NIMBLE’s HMC sampler

Description

nimbleHMC is the most direct entry point to using NIMBLE’s HMC sampler. HMC sampling is
applied to all unobserved dimensions of a hierarchical model. Discrete-valued model dimensions
cannot be sampled using HMC, and will produce an error. See help(HMC) for details of the HMC
algorithm.

Usage

nimbleHMC(
code,
constants = list(),
data = list(),
inits,
dimensions = list(),
model,
type = "NUTS",
monitors,
thin = 1,
niter = 10000,
nburnin = 0,
nchains = 1,
check = TRUE,
setSeed = FALSE,
progressBar = getNimbleOption("MCMCprogressBar"),
samples = TRUE,
samplesAsCodaMCMC = FALSE,
summary = FALSE,
WAIC = FALSE

)

Arguments

code The quoted code expression representing the model, such as the return value
from a call to nimbleCode). Not required if model is provided.

constants Named list of constants in the model. Constants cannot be subsequently modi-
fied. For compatibility with JAGS and BUGS, one can include data values with
constants and nimbleModel will automatically distinguish them based on what
appears on the left-hand side of expressions in code.

data Named list of values for the data nodes. Values that are NA will not be flagged
as data.



nimbleHMC 9

inits Argument to specify initial values for each MCMC chain. See details.

dimensions Named list of dimensions for variables. Only needed for variables used with
empty indices in model code that are not provided in constants or data.

model A compiled or uncompiled NIMBLE model object. When provided, this model
will be used to configure the MCMC algorithm to be executed, rather than using
the code, constants, data and inits arguments to create a new model object.
However, if also provided, the inits argument will still be used to initialize this
model prior to running each MCMC chain.

type A character string specifying the type of HMC sampling to apply, either "NUTS"
or "NUTS_classic". See ‘help(NUTS)‘ or ‘help(NUTS_classic)‘ for details of
each sampler. The default sampler type is "NUTS".

monitors A character vector giving the node names or variable names to monitor. The
samples corresponding to these nodes will returned, and/or will have summary
statistics calculated. Default value is all top-level stochastic nodes of the model.

thin Thinning interval for collecting MCMC samples. Thinning occurs after the ini-
tial nburnin samples are discarded. Default value is 1.

niter Number of MCMC iterations to run. Default value is 10000.

nburnin Number of initial, pre-thinning, MCMC iterations to discard. Default value is 0.

nchains Number of MCMC chains to run. Default value is 1.

check Logical argument, specifying whether to check the model object for missing or
invalid values. Default value is TRUE.

setSeed Logical or numeric argument. If a single numeric value is provided, R’s random
number seed will be set to this value at the onset of each MCMC chain. If a
numeric vector of length nchains is provided, then each element of this vector
is provided as R’s random number seed at the onset of the corresponding MCMC
chain. Otherwise, in the case of a logical value, if TRUE, then R’s random number
seed for the ith chain is set to be i, at the onset of each MCMC chain. Note that
specifying the argument setSeed = 0 does not prevent setting the RNG seed,
but rather sets the random number generation seed to 0 at the beginning of each
MCMC chain. Default value is FALSE.

progressBar Logical argument. If TRUE, an MCMC progress bar is displayed during exe-
cution of each MCMC chain. Default value is defined by the nimble package
option MCMCprogressBar.

samples Logical argument. If TRUE, then posterior samples are returned from each MCMC
chain. These samples are optionally returned as coda mcmc objects, depending
on the samplesAsCodaMCMC argument. Default value is TRUE. See details.

samplesAsCodaMCMC

Logical argument. If TRUE, then a coda mcmc object is returned instead of an R
matrix of samples, or when nchains > 1 a coda mcmc.list object is returned
containing nchains mcmc objects. This argument is only used when samples is
TRUE. Default value is FALSE. See details.

summary Logical argument. When TRUE, summary statistics for the posterior samples of
each parameter are also returned, for each MCMC chain. This may be returned
in addition to the posterior samples themselves. Default value is FALSE. See
details. z
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WAIC Logical argument. When TRUE, the WAIC (Watanabe, 2010) of the model is
calculated and returned. If multiple chains are run, then a single WAIC value is
calculated using the posterior samples from all chains. Default value is FALSE.
Note that the version of WAIC used is the default WAIC conditional on random
effects/latent states and without any grouping of data nodes. See help(waic)
for more details.

Details

nimbleHMC provides capability for running multiple MCMC chains, specifying the number of
MCMC iterations, thinning, and burn-in, and which model variables should be monitored. It also
provides options to return the posterior samples, to return summary statistics calculated from the
posterior samples, and to return a WAIC value.

The entry point for this function is providing the code, constants, data and inits arguments, to
create a new NIMBLE model object, or alternatively providing an exisiting NIMBLE model object
as the model argument.

At least one of samples, summary or WAIC must be TRUE, since otherwise, nothing will be returned.
Any combination of these may be TRUE, including possibly all three, in which case posterior sam-
ples, summary statistics, and WAIC values are returned for each MCMC chain.

When samples = TRUE, the form of the posterior samples is determined by the samplesAsCodaMCMC
argument, as either matrices of posterior samples, or coda mcmc and mcmc.list objects.

Posterior summary statistics are returned individually for each chain, and also as calculated from
all chains combined (when nchains > 1).

The inits argument can be one of three things:

(1) a function to generate initial values, which will be executed once to initialize the model object,
and once to generate initial values at the beginning of each MCMC chain, or (2) a single named list
of initial values which, will be used to initialize the model object and for each MCMC chain, or (3)
a list of length nchains, each element being a named list of initial values. The first element will be
used to initialize the model object, and once element of the list will be used for each MCMC chain.

The inits argument may also be omitted, in which case the model will not be provided with initial
values. This is not recommended.

The niter argument specifies the number of pre-thinning MCMC iterations, and the nburnin ar-
gument specifies the number of pre-thinning MCMC samples to discard. After discarding these
burn-in samples, thinning of the remaining samples will take place. The total number of posterior
samples returned will be floor((niter-nburnin)/thin).

Value

A list is returned with named elements depending on the arguments, unless only one among samples,
summary, and WAIC are requested, in which case only that element is returned. These elements
may include samples, summary, and WAIC. When nchains = 1, posterior samples are returned as a
single matrix, and summary statistics as a single matrix. When nchains > 1, posterior samples are
returned as a list of matrices, one matrix for each chain, and summary statistics are returned as a list
containing nchains+1 matrices: one matrix corresponding to each chain, and the final element pro-
viding a summary of all chains, combined. If samplesAsCodaMCMC is TRUE, then posterior samples
are provided as coda mcmc and mcmc.list objects. When WAIC is TRUE, a WAIC summary object
is returned.
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Author(s)

Daniel Turek

See Also

configureHMC buildHMC configureMCMC buildMCMC runMCMC

Examples

code <- nimbleCode({
mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10) {

x[i] ~ dnorm(mu, sd = sigma)
}

})
data <- list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3))
inits <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))
mcmc.output <- nimbleHMC(code, data = data, inits = inits,

monitors = c("mu", "sigma"), thin = 10,
niter = 20000, nburnin = 1000, nchains = 3,
summary = TRUE, WAIC = TRUE)

sampler_NUTS No-U-Turn (NUTS) Hamiltonian Monte Carlo (HMC) Sampler

Description

The NUTS sampler implements No-U-Turn (NUTS) Hamiltonian Monte Carlo (HMC) sampling
following the algorithm of version 2.32.2 of Stan. Internally, any posterior dimensions with bounded
support are transformed, so sampling takes place on an unconstrained space. In contrast to standard
HMC (Neal, 2011), the NUTS algorithm removes the tuning parameters of the leapfrog step size
and the number of leapfrog steps, thus providing a sampling algorithm that can be used without
hand-tuning or trial runs.

Usage

sampler_NUTS(model, mvSaved, target, control)

Arguments

model An uncompiled nimble model object on which the MCMC will operate.

mvSaved A nimble modelValues object to be used to store MCMC samples.

target A character vector of node names on which the sampler will operate.
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control A named list that controls the precise behavior of the sampler. The default val-
ues for control list elements are specified in the setup code of the sampler. A
description of the possible control list elements appear in the details section.

Details

The NUTS sampler accepts the following control list elements:

• messages. A logical argument, specifying whether to print informative messages (default =
TRUE)

• numWarnings. A numeric argument, specifying how many warnings messages to emit (for
example, when NaN values are encountered). See additional details below. (default = 0)

• epsilon. A positive numeric argument, specifying the initial step-size value. If not provided,
an appropriate initial value is selected.

• gamma. A positive numeric argument, specifying the degree of shrinkage used during the
initial period of step-size adaptation. (default = 0.05)

• t0. A non-negative numeric argument, where larger values stabilize (attenuate) the initial
period of step-size adaptation. (default = 10)

• kappa. A numeric argument between zero and one, where smaller values give a higher weight-
ing to more recent iterations during the initial period of step-size adaptation. (default = 0.75)

• delta. A numeric argument, specifying the target acceptance probability used during the initial
period of step-size adaptation. (default = 0.8)

• deltaMax. A positive numeric argument, specifying the maximum allowable divergence from
the Hamiltonian value. Paths which exceed this value are considered divergent, and will not
proceed further. (default = 1000)

• M. A vector of positive real numbers, with length equal to the number of dimensions being
sampled. Elements of M specify the diagonal elements of the diagonal mass matrix (or the
metric) used for the auxiliary momentum variables in sampling. Sampling may be improved
if the elements of M approximate the marginal inverse variance (precision) of the (potentially
transformed) parameters. (default: a vector of ones).

• warmupMode. A character string, specifying the behavior for choosing the number of warmup
iterations. Four values are possible. The value ’default’ (the default) sets the number of
warmup iterations as the number of burnin iterations (if a positive value for nburnin is used)
or half the number of MCMC iterations in each chain (if nburnin = 0). The value ’burnin’
sets the number of warmup iterations as the number of burnin iterations regardless of the
length of the burnin period. The value ’fraction’ sets the number of warmup iterations as
fraction*niter, where fraction is the value of the warmup control argument, and niter is
the number of MCMC iterations in each chain; in this case, the value of the warmup control
argument must be between 0 and 1. The value ’iterations’ sets the number of warmup iterations
as the value of the warmup control argumnet, regardless of the length of the burnin period or
the number of MCMC iterations; in this case the value of warmup must be a non-negative
integer. In all cases, the number of (pre-thinning) samples discarded equals nburnin, as is
always the case for MCMC in NIMBLE.

• warmup. Numeric value used in determining the number of warmup iterations. This control
argument is only used when warmupMode is ’fraction’ or ’iterations’.
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• maxTreeDepth. The maximum allowable depth of the binary leapfrog search tree for generat-
ing candidate transitions. (default = 10)

• adaptWindow. Number of iterations in the first adaptation window used for adapting the mass
matrix (M). Subsequent adaptation windows double in length, so long as enough warmup
iterations are available. (default = 25)

• initBuffer. Number of iterations in the initial warmup window, which occurs prior to the first
adaptation of the metric M. (default = 75)

• termBuffer. Number of iterations in the final (terminal) warmup window, before which the
metric M is not adjusted(default = 50)

• adaptive. A logical argument, specifying whether to do any adaptation whatsoever. When
TRUE, specific adaptation routines are controlled by the adaptEpsilon and adaptM control
list elements. (default = TRUE)

• adaptEpsilon. A logical argument, specifying whether to perform stepsize adaptation. Only
used when adaptive = TRUE. (default = TRUE)

• adaptM. A logical argument, specifying whether to perform adaptation of the mass matrix
(metric) M. Only used when adaptive = TRUE. (default = TRUE)

• initializeEpsilon. A logical argument, specifying whether to perform the epsilon (stepsize)
initialization routine at the onset of each adaptation window. (default = TRUE)

NaN values may be encountered in the course of the leapfrog procedure. In particular, when the
stepsize (epsilon) is too large, the leapfrog procedure can step too far and arrive at an invalid region
of parameter space, thus generating a NaN value in the likelihood evaluation or in the gradient
calculation. These situation are handled by the sampler by rejecting the NaN value, and reducing the
stepsize.

Value

A object of class ‘sampler_NUTS‘.

Author(s)

Perry de Valpine and Daniel Turek

References

Hoffman, Matthew D., and Gelman, Andrew (2014). The No-U-Turn Sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1): 1593-
1623.

Stan Development Team. 2023. Stan Modeling Language Users Guide and Reference Manual,
2.32.2. https://mc-stan.org.

Examples

code <- nimbleCode({
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
sigma ~ dunif(0, 10000)
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for(i in 1:N) {
mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], sd = sigma)

}
})

set.seed(0)
N <- 100
x <- rnorm(N)
y <- 1 + 0.3*x + rnorm(N)
constants <- list(N = N, x = x)
data <- list(y = y)
inits <- list(b0 = 1, b1 = 0.1, sigma = 1)

Rmodel <- nimbleModel(code, constants, data, inits, buildDerivs = TRUE)

conf <- configureMCMC(Rmodel, nodes = NULL)

conf$addSampler(target = c('b0', 'b1', 'sigma'), type = 'NUTS')

Rmcmc <- buildMCMC(conf)

sampler_NUTS_classic Classic No-U-Turn (NUTS_classic) Hamiltonian Monte Carlo (HMC)
Sampler

Description

The NUTS_classic sampler implements the original No-U-Turn (NUTS classic) sampler as put forth
in Hoffman and Gelman (2014) for performing joint updates of multiple continuous-valued poste-
rior dimensions. This is done by introducing auxiliary momentum variables and using first-order
derivatives to simulate Hamiltonian dynamics on this augmented paramter space. Internally, any
posterior dimensions with bounded support are transformed, so sampling takes place on an uncon-
strained space. In contrast to standard HMC (Neal, 2011), the NUTS_classic algorithm removes
the tuning parameters of the leapfrog step size and the number of leapfrog steps, thus providing a
sampling algorithm that can be used without hand tuning or trial runs.

Usage

sampler_NUTS_classic(model, mvSaved, target, control)

Arguments

model An uncompiled nimble model object on which the MCMC will operate.
mvSaved A nimble modelValues object to be used to store MCMC samples.
target A character vector of node names on which the sampler will operate.
control A named list that controls the precise behavior of the sampler. The default val-

ues for control list elements are specified in the setup code of the sampler. A
description of the possible control list elements appear in the details section.



sampler_NUTS_classic 15

Details

The NUTS_classic sampler accepts the following control list elements:

• messages. A logical argument, specifying whether to print informative messages. (default =
TRUE)

• numWarnings. A numeric argument, specifying how many warnings messages to emit (for
example, when NaN values are encountered). See additional details below. (default = 0)

• epsilon. A positive numeric argument, specifying the initial step-size value. If not provided,
an appropriate initial value is selected.

• gamma. A positive numeric argument, specifying the degree of shrinkage used during the
initial period of step-size adaptation. (default = 0.05)

• t0. A non-negative numeric argument, where larger values stabilize (attenuate) the initial
period of step-size adaptation. (default = 10)

• kappa. A numeric argument between zero and one, where smaller values give a higher weight-
ing to more recent iterations during the initial period of step-size adaptation. (default = 0.75)

• delta. A numeric argument, specifying the target acceptance probability used during the initial
period of step-size adaptation. (default = 0.65)

• deltaMax. A positive numeric argument, specifying the maximum allowable divergence from
the Hamiltonian value. Paths which exceed this value are considered divergent and will not
proceed further. (default = 1000)

• M. A vector of positive real numbers, with length equal to the number of dimensions being
sampled. Elements of M specify the diagonal elements of the diagonal mass matrix (or the
metric) used for the auxiliary momentum variables in sampling. Sampling may be improved
if the elements of M approximate the marginal inverse variance (precision) of the (potentially
transformed) parameters. (default: a vector of ones).

• warmupMode. A character string, specifying the behavior for choosing the number of warmup
iterations. Four values are possible. The value ’default’ (the default) sets the number of
warmup iterations as the number of burnin iterations (if a positive value for nburnin is used)
or half the number of MCMC iterations in each chain (if nburnin = 0). The value ’burnin’
sets the number of warmup iterations as the number of burnin iterations regardless of the
length of the burnin period. The value ’fraction’ sets the number of warmup iterations as
fraction*niter, where fraction is the value of the warmup control argument, and niter is
the number of MCMC iterations in each chain; in this case, the value of the warmup control
argument must be between 0 and 1. The value ’iterations’ sets the number of warmup iterations
as the value of the warmup control argumnet, regardless of the length of the burnin period or
the number of MCMC iterations; in this case the value of warmup must be a non-negative
integer. In all cases, the number of (pre-thinning) samples discarded equals nburnin, as is
always the case for MCMC in NIMBLE.

• warmup. Numeric value used in determining the number of warmup iterations. This control
argument is only used when warmupMode is ’fraction’ or ’iterations’.

• maxTreeDepth. The maximum allowable depth of the binary leapfrog search tree for generat-
ing candidate transitions. (default = 10)

• adaptWindow. Number of iterations in the first adaptation window used for adapting the mass
matrix (M). Subsequent adaptation windows double in length, so long as enough warmup
iterations are available. (default = 25)
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• initBuffer. Number of iterations in the initial warmup window, which occurs prior to the first
adaptation of the metric M. (default = 75)

• termBuffer. Number of iterations in the final (terminal) warmup window, before which the
metric M is not adjusted. (default = 50)

• adaptive. A logical argument, specifying whether to do any adaptation whatsoever. When
TRUE, specific adaptation routines are controlled by the adaptEpsilon and adaptM control
list elements. (default = TRUE)

• adaptEpsilon. A logical argument, specifying whether to perform stepsize adaptation. Only
used when adaptive = TRUE. (default = TRUE)

• adaptM. A logical argument, specifying whether to perform adaptation of the mass matrix
(metric) M. Only used when adaptive = TRUE. (default = TRUE)

• initializeEpsilon. A logical argument, specifying whether to perform the epsilon (stepsize)
initialization routine at the onset of each adaptation window. (default = TRUE)

NaN values may be encountered in the course of the leapfrog procedure. In particular, when the
stepsize (epsilon) is too large, the leapfrog procedure can step too far and arrive at an invalid
region of parameter space, thus generating a NaN value in the likelihood evaluation or in the gradient
calculation. These situation are handled by the sampler by rejecting the NaN value, and reducing the
stepsize.

Value

A object of class ‘sampler_NUTS_classic‘.

Author(s)

Daniel Turek

References

Hoffman, Matthew D., and Gelman, Andrew (2014). The No-U-Turn Sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1): 1593-
1623.

Examples

code <- nimbleCode({
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
sigma ~ dunif(0, 10000)
for(i in 1:N) {

mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], sd = sigma)

}
})

set.seed(0)
N <- 100
x <- rnorm(N)
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y <- 1 + 0.3*x + rnorm(N)
constants <- list(N = N, x = x)
data <- list(y = y)
inits <- list(b0 = 1, b1 = 0.1, sigma = 1)

Rmodel <- nimbleModel(code, constants, data, inits, buildDerivs = TRUE)

conf <- configureMCMC(Rmodel, nodes = NULL)

conf$addSampler(target = c('b0', 'b1', 'sigma'), type = 'NUTS_classic')

Rmcmc <- buildMCMC(conf)

stateNL_NUTS nimbleList definition used internally in NUTS sampler.

Description

nimbleList definition used internally in NUTS sampler.

Usage

stateNL_NUTS

Format

An object of class list of length 1.

treebranchNL_NUTS nimbleList definition used internally in NUTS sampler.

Description

nimbleList definition used internally in NUTS sampler.

Usage

treebranchNL_NUTS

Format

An object of class list of length 1.
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